Division of Creatv MicroTech
AACR Annual Meeting 2023 April 14 ${ }^{\text {ht }}-19^{\text {th }} 2023$ Abstract No. 3310

Extracellular Vesicle Budding from Stromal Macrophages in the Blood of Metastatic Non-Small Cell Lung Cancer Patients Correlates with Poor Survival

Jillian A. Moran ${ }^{1,3}$, Daniel L. Adams ${ }^{1}$, Pablo Lopez ${ }^{2}$, Jianzhong He ${ }^{2}$, Yawei Qiao ${ }^{2}$, Ting Xu², Zhongxing Liao ${ }^{2}$, Kirby P. Gardner ${ }^{1,4}$, Cha-Mei Tang ${ }^{5}$, Steven H. Lin ${ }^{2}$ ${ }^{1}$ Creatv MicroTech, Monmouth Junction, NJ 08852, ${ }^{2}$ MD Anderson Cancer Center, Houston, TX 77030, ${ }^{3}$ Rutgers, the State University of New Jersey, New Brunswick, NJ 08901, ${ }^{4}$ Rutgers University Graduate School of Biomedical Sciences, New Brunswick, NJ 08901, ${ }^{5}$ Creatv MicroTech, Rockville, MD 20850

ABSTRACT

Cancer Extracellular Vesicles (EVs) are involved in cellular communication, tumor growth, progression, and metastasis in cancer The origins of EVs, their formation, and potential clinical use as biomarkers are undefined. Recently, budding of extracellular structures on Cancer Associated Macrophage-Like Cells [CAMLs], a specific subtype of phagocytic circulating stromal cells, has been observed in metastatic non-small cell lung carcinoma (mNSCLC) patients. In this prospective analysis of $\mathrm{n}=40 \mathrm{mNSCLC}$ samples, we enumerated EV budding on CAMLs to determine if their formation had an effect on clinical outcomes. These preliminary results suggest tha EV budding from a specific subtype of circulating tumor associated macrophage prognosticates for worse clinical outcome which may serve as the mechanism for cancer EV formation and spread throughout the body.

CAML

Apoptotic Body
Figure 1. The three subtypes of EVs are separated based on method of formation and size (exosomes [$\sim 30-100 \mathrm{~nm}$], microvesicles [$\sim 100 \mathrm{~nm}-1 \mu \mathrm{~m}$], and apoptotic bodies $[\sim 1-5 \mu \mathrm{~m}]$). EVs originate from CAMLs which leave the tumor site and enter circulation.

MATERIALS \& METHODS

We initiated a single blind prospective pilot study to evaluate extracellular budding on the CAMLs of mNSCLC patients from blood samples obtained prior to therapy to determine their prevalence and clinical utility. Anonymized blood was procured and filtered to isolate CAMLs and stained for cytokeratin, CD45, CD31 and PD-L1. EV budding was observed as small $(\leq 1 \mu \mathrm{~m})$ bulbous protrusions from the cell periphery. EVs were quantified and compared against patient progression free survival (PFS) and overall survival (OS) with hazard ratios (HRs) at 24 months by censored univariate analysis. The imaged EVs were also characterized by their PD-L1 biomarker expression.

Copyright © 2023 Creatv MicroTech, all rights reserved

Figure 2. PFS Negative vs Positive EV Presence

Figure 3. OS Negative vs Positive EV Presence

RESULTS

- CAMLs were identified in $88 \%(n=35 / 40)$ of all samples
- EV budding was identified in $60 \%(n=21 / 35)$ of CAMLs
- Presence of EV budding in CAMLs was associated with significantly worse PFS ($\mathrm{HR}=3.39,95 \% \mathrm{Cl}=1.4-8.2, \mathrm{p}=0.0137$)
- Presence of EV budding in CAMLs was associated with significantly worse $\mathrm{OS}(\mathrm{HR}=3.57,95 \% \mathrm{Cl}=1.4-9.4, \mathrm{p}=\mathbf{0 . 0 2 0 1}$)
- EVs were found to have positive PD-L1 expression in 57% ($\mathrm{n}=12 / 21$) of CAMLs

Figure 4. EV positive CAML ($45 \mu \mathrm{~m}$ in diameter) stained for PDL1. Multiple PDL1 positive EVs ranging from sizes of $<1 \mu \mathrm{~m}$ to $3 \mu \mathrm{~m}$.

CONCLUSIONS

- EV budding found on phagocytic stromal cells found in the blood appear with tumor positive biomarkers, predict faster disease progression and poor survival.
- These findings suggest that CAMLs are an origin cell for some cancer EVs and can be evaluated through liquid biopsy analysis
- Larger validation studies and cross comparison of PD-L1 on EVs as it related to immunotherapy response is ongoing.

REFERENCES

1. Moran JA, et al "Monitoring PD-L1 expression on circulating tumorassociated cells in recurrent metastatic non-small-cell lung carcinoma predicts response to immunotherapy with radiation therapy." JCO Precision Oncology, (6). (2022)
2. Doyle LM, et al "Overview of Extracellular Vesicles, Their Origin Composition, Purpose, and Methods for Exosome Isolation and Analysis." Cells, 8(7), 727. (2019)
3. Adams DL, et al "Combining circulating tumor cells and circulating Adams cancer associated macrophage-like cells for accurately predicting responsiveness of new line therapies in late stage cancers." JCO 36(15) 12032. (2018)

FUNDING SOURCES

This work was supported by a NIH grant R43CA206840

