

# Extracellular Vesicles Budding from Stromal Macrophages from the Blood Circulating in Metastatic Non-Small Cell Lung Cancer Patients Predict Clinical Outcome

**Division of Creatv MicroTech** 

**ASCO Annual Meeting 2023** 

<sup>1</sup>Creatv MicroTech, Monmouth Junction, NJ 08852, <sup>2</sup>Fox Chase Cancer Center, Philadelphia, PA 19111, <sup>3</sup>MD Anderson Cancer Center, Houston, TX 77030, <sup>4</sup>Creatv MicroTech, Rockville, MD 20850

# Abstract No. 6

June 2<sup>nd</sup>-6<sup>th</sup> 2023

### ABSTRACT

Extracellular vesicles (EVs) which includes exosomes, microvesicles, and apoptotic bodies are involved in cellular communication, tumor growth, and metastasis in cancer (Fig 1). Recently, extracellular budding structures on Associated Macrophage-Like Cells Cancer [CAMLs], a subtype of phagocytic circulating stromal cells found in circulation, was observed in patients with metastatic non-small cell lung carcinoma (mNSCLC). In this prospective analysis of n=104 mNSCLC patients, we enumerated EV budding on CAMLs to determine their clinical significance on Progression Free Survival (PFS) & Overall Survival (OS), further subtyping based on treatment with or without PD-L1 Immunotherapy (IMT) based on standard of care treatment. These preliminary data suggests that EV positive (EV+) CAMLs prognosticates for worse outcomes in mNSCLC.



Three subtypes of EVs are defined by Figure 1. formation and size (exosomes [~30method of microvesicles [~100nm-1µm], 100nm], and apoptotic bodies [~1-5µm]).

# **MATERIALS & METHODS**

We initiated a single blind multi-year prospective study to investigate the relationship between EV budding in CAMLs to PFS & OS prior to start of new treatment lines for mNSCLC. Anonymized blood (7.5 mL) was procured from n=104 pathologically confirmed mNSCLC patients & filtered to isolate CAMLs to measure EV budding using tumor/EV markers (i.e. cytokeratin, CD63 or CD81) and immune specific marker (PD-L1). Blood was filtered by CellSieve<sup>™</sup> microfiltration and EV budding characterized as small (≤5µm) bulbous protrusions from the cell cytoplasm. EVs were quantified by presence (EV+) or absence (EV-) to compare PFS & OS with hazard ratios (HRs) at 60 months by censored univariate and multivariate analyses.



0% **EV(-)** 26 EV(+) 38



This work was supported by a NIH grant R43CA206840 Copyright © 2023 Creatv MicroTech, all rights reserved

# Jillian A. Moran<sup>1</sup>, Daniel L. Adams<sup>1</sup>, Martin J. Edelman<sup>2</sup>, Pablo Lopez<sup>3</sup>, Jianzhong He<sup>3</sup>, Yawei Qiao<sup>3</sup>, Ting Xu<sup>3</sup>, Zhongxing Liao<sup>3</sup>, Kirby P. Gardner<sup>1</sup>, Cha-Mei Tang<sup>4</sup>, Steven H. Lin<sup>3</sup>



Figures 3 & 4. PFS & OS of mNSCLC patients treated with IMT or without IMT by EV(-) CAMLs vs EV(+) CAMLs.



## CONCLUSIONS

EV budding on phagocytic stromal cells found in the blood of mNSCLC patients appears to predict for poorer PFS and OS (Figs 5 and 6)

Poorer PFS and OS caused by EV presence in CAMLs is reduced with the addition of PD-L1 immunotherapy (**Figs 3 and 4**)

Larger validation studies are ongoing in both mNSCLC and stage III NSCLC patients

## **FUNDING SOURCES**

### REFERENCES

1. Moran, et al "Monitoring PD-L1 expression on circulating" tumor-associated cells in recurrent metastatic non-smallcell lung carcinoma predicts response to immunotherapy with radiation therapy." JCO-PO, (6) 2022

2. Doyle, et al "Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis." Cells, 8 (7), 2019

3. Adams, et al "Combining circulating tumor cells and circulating cancer associated macrophage-like cells for accurately predicting responsiveness of new line therapies in late stage cancers." JCO, 36(15) 2018



- CAMLs were identified in 93% (n=97/104) of all samples
- EV budding was identified in 62% (n=60/97) of samples with CAMLs
- EV(+) CAMLs were associated with significantly worse PFS (HR=1.67, **p=0.0410**) and OS (HR=1.88, **p=0.0108**) (Fig 2)
- EV(+) patients NOT treated with IMT had significantly worse PFS (HR=2.51, **p=0.0251**) and OS (HR=2.32, **p=0.0407**) (Figs 3 and 4)
- EV(+) patients appeared to benefit from additional IMT with longer mPFS and mOS (**Figs 3 and 4**)



Figure 5. EV positive CAML (45µm) stained for PD-L1 with PD-L1 positive EVs ranging <1µm-3µm.

#### Figure 6. Patient demographic table.

| Median Age (Range) |                   | 66 (42-82)      |
|--------------------|-------------------|-----------------|
| Sex (M/F)          | 63 (6             | 51%) / 40 (39%) |
| Race               | White             | 79 (77%)        |
|                    | Black             | 18 (17%)        |
|                    | Other             | 6 (6%)          |
| Histology          | Adeno             | 59 (58%)        |
|                    | NSCLC/Unknown     | 23 (22%)        |
|                    | Squamous          | 21 (20%)        |
| Smoker History     | Never             | 16 (16%)        |
|                    | Light (<50pks/yr) | 47 (46%)        |
|                    | Heavy (≥50pks/yr) | 33 (32%)        |
|                    | Unknown           | 7 (6%)          |
| ECOG               | 0                 | 48 (47%)        |
|                    | ≥1                | 47 (46%)        |
|                    | Unknown           | 8 (7%)          |
| Recurrence         | Localized         | 29 (28%)        |
|                    | Distant           | 74 (72%)        |
| Immunotherapy      | Pembro            | 25 (24%)        |
|                    | Durva             | 12 (12%)        |
|                    | Atezo             | 11 (11%)        |
|                    | Other             | 18 (17%)        |
| EV Presence        | EV(-)             | 43 (42%)        |
|                    | EV(+)             | 60 (58%)        |
|                    |                   |                 |